Lawlessness and Rank Restrictions in Certain Finitary Groups
نویسنده
چکیده
We give two applications of the recent classification of locally finite simple finitary skew linear groups. We show that certain irreducible finitary skew linear groups of infinite dimension, generate the variety of all groups and have infinite Prüfer rank.
منابع مشابه
Finitary Lie algebras
An algebra is called finitary if it consists of finite-rank transformations of a vector space. We classify finitary simple and finitary irreducible Lie algebras over an algebraically closed field of characteristic 6= 2, 3.
متن کاملTriple factorization of non-abelian groups by two maximal subgroups
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...
متن کاملAn omega-Power of a Finitary Language Which is a Borel Set of Infinite Rank
ω-powers of finitary languages are ω-languages in the form V , where V is a finitary language over a finite alphabet Σ. Since the set Σ of infinite words over Σ can be equipped with the usual Cantor topology, the question of the topological complexity of ω-powers naturally arises and has been raised by Niwinski [Niw90], by Simonnet [Sim92], and by Staiger [Sta97b]. It has been proved in [Fin01]...
متن کاملAn ω-Power of a Finitary Language Which is a Borel Set of Infinite Rank
ω-powers of finitary languages are ω-languages in the form V , where V is a finitary language over a finite alphabet Σ. Since the set Σ of infinite words over Σ can be equipped with the usual Cantor topology, the question of the topological complexity of ω-powers naturally arises and has been raised by Niwinski [Niw90], by Simonnet [Sim92], and by Staiger [Sta97b]. It has been proved in [Fin01]...
متن کاملOn Automorphism Groups of Some Types of Generic Distributions
To certain types of generic distributions (subbundles in a tangent bundle) one can associate canonical Cartan connections. Many of these constructions fall into the class of parabolic geometries. The aim of this article is to show how strong restrictions on the possibles sizes of automorphism groups of such distributions can be deduced from the existence of canonical Cartan connections. This ne...
متن کامل